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Abstract

The ring of symmetric functions is a graded ring with important applications in
mathematical physics. By examining the various transition matrices between
the different bases of the ring of symmetric functions, we are able to write
the spin characters of the symmetric group in terms of the ordinary characters
of the symmetric group. This approach allows us to describe a new, non-
recursive, combinatorial algorithm for the spin characters. We also present
simpler algorithms in two special cases.

PACS number: 02.10.0x
Mathematics Subject Classification: 05E0S5, 05E10

1. Introduction

In 1911, Schur [10] described various symmetric functions and introduced the spin characters
of the symmetric group in his definitive paper on the projective representation of the symmetric
group. The spin characters were not paid much regard until the 1960s when Morris wrote a
comprehensive account [6] and gave some recursive formulae for them. More recently, spin
characters have been of interest. For example in 1995, Morris [8] gave further improvements
and results subsequent to his previous work.

2. Partitions and Young tableaux

A partition A is a finite sequence of non-negative integers A = (Aq, A2, ..., ) arranged in
weakly descending (meaning non-increasing) order so that A; > A, > --- > A > 0. The
components A; of the partition X are called parts and the number of parts in a partition A is called
the length of the partition, and is denoted by /(1). The sum of the parts L; + Ao+ -+ A =n
is called the weight of the partition and is denoted by |A|. We write A - n to mean A is a
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partition of weight n. We reserve P, to mean the set of all partitions of weight n. The number
of occurrences of a part A; in a partition X is called the multiplicity of A; in A and is denoted
by m,,. We usually write the multiplicity of each part as a superscript with

o= (AT,

The reverse lexicographical ordering L, on the set P, of all partitions of n € N is the
subset of P, x P, consisting of all ordered pairs (i, A) such that either u = X or else the first
non-vanishing difference u; — A; is positive. £, is a total ordering and if (i, A) € £, we write
n = A

Use S, to denote the symmetric group whose elements are permutations of n objects.
Elements in the same conjugacy class have the same cycle structure, and so the set of partitions
of weight n, P,, partitions the symmetric group into distinct conjugacy classes. If 7 € S, is
a permutation with conjugacy class described by A € P, then we use H, for the conjugacy
class H;. The number of elements in the class H, is denoted by %, . Likewise, Z, is used for
the centralizer Z, of & and z; denotes the number of elements in the centralizer Z; .

Lemma 2.1 ([9], proposition 1.1.1). For a partition A \= n of weight n, the number of elements
in the centralizer is determined by z, = []; )»;"A" my, ! where the product is taken over all i for
which A; is a non-zero part of A with multiplicity m,,.

Lagrange’s theorem ([3], theorem 2 4.4) tells us that we can determine the size of each
conjugacy class H, by the size of the centralizer. Indeed, |H,| = |S,|,”|Z,| and so
n! n!

hy=—=—= . (D
oo JLia " my,!

Every partition A of weight n can be associated with a Young diagram Y* involving n
boxes (cells, circles, dots, etc) with the ith row containing A; boxes. The staircase of a Young
diagram consists of all the boxes in a continuous outer ribbon going from the upper right to
the lower left (or vice versa).

A Young tableau t for a partition A of weight n is an assignment of n numbers (not
necessarily all different) to the n boxes of the Young diagram Y*. Standard numbering means
that the assignment of the numbers 1,2,...,d < n is such that the numbers are strictly
increasing from left to right across each row, and strictly decreasing down each column. There
are several methods of semi-standard numbering. One of them is unitary numbering in which
the assignment of the numbers 1, 2, ..., d < n is such that the numbers are weakly increasing
(meaning non-decreasing) from left to right across each row and strictly decreasing down each
column. When the numbering is unitary we call the tableau unitary.

Another type of semi-standard numbering is regular numbering in which the assignment
of the numbers 1,2, ...,d < n is such that the numbers are weakly increasing from left to
right across each row, weakly increasing down each column and like digits form a continuous
staircase of some subdiagram. When the numbering is regular we call the tableau regular.

Let A be a partition with Young diagram Y*. We can inject a partition p — |A| the
same weight as A into the Young diagram Y* of A to form a tableau. To inject a partition
p = (p1, P2, .., pq) of length d into the diagram, we mean injecting p; 1’s; p2 2’s; .. .; pg
d’s. A negative application is an injection of numbers giving a regular tableau in which like
digits occupy an even number of rows.

Associated with each Young tableau is a word formed by reading the numbers in the
tableau in successive rows from right to left, starting from the top row. The numbers which
make up the word are called the elements of the word. A standard word is one in which
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the numbers 1, 2, ..., n each occurs only once. The indices of each element of the word are
defined recursively by the following steps:

(i) the number 1 has index 0;
(i1) if the number r has index i, the number r + 1 has

(a) index i if it is to the right of r or
(b) index i + 1 if it is to the left of 7.

For each standard word w the charge of the word c(w) is the sum of the indices of each element
of w. For each nonstandard word of a tableau 7, we extract a unique set of standard subwords
of 7. The extraction is defined recursively by the following steps:

(i) check if w is standard, if not—proceed, otherwise we are done;
(i) starting from the left, mark the first 1 that occurs in w;
(iii) if » has been marked, then search for the first occurrence of  + 1 moving right to the end
of the word, and then through the word once more:

(a) if nor +1 is found, delete the marked standard word from w and repeat the procedure
from the start to extract another standard word or
(b) if  + 1 is found, mark it and begin the search for » + 2.

The charge of a nonstandard word is the sum of the charges of its standard subwords.

3. The ring of symmetric functions

A polynomial from the ring Z[x1, x5, . . . , x,] of polynomials in n indeterminates is a symmetric
polynomial if it is invariant under the action of the symmetric group. The set of symmetric
polynomials in n indeterminates A, = Z[xi, X2, ..., x,]% forms a subring of the ring
Z[x1, x3, ..., x,] of polynomials in n indeterminates. For k > 0, let Ailk) consist of the
homogeneous symmetric polynomials of degree k, and include the zero polynomial in each
A® for all k > 0. Including the zero means that each A% is a group under addition. Also,

since Aﬁl")Af,j Y AMY the ring of symmetric polynomials

Av=EPAY
k=0
is graded. Because the ring is graded, we can set up an inverse system of natural projections and
take a projective limit of the homogeneous subgroups. To this end we use the natural projection
Pn+ln : Ans1 = A, making any x,.; terms in A, equal to zero. Clearly p,41 5 is a surjective
ring homomorphism. Next, we restrict p,+1 , to act on polynomials of degree k < n by putting
Pkt ALY — A so that pf,, , is also injective. This means that pf,, ,(A%)) = A%
Taking the projective limit of this inverse system A® = lim.., A% gives A®, the set of
homogeneous symmetric functions of degree k, with zero. For comprehensive details on
projective limits, see [2].
The A® form additive groups, and we use these groups to construct the graded ring of
symmetric functions by putting

A=Pa%.
k>0

We use the natural projection pf : A® — A® mapping symmetric functions of degree k to
symmetric polynomials of degree & in n indeterminates to describe certain classical symmetric
functions.
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For any partition A = (A1, A2, ..., A;) with j < n parts, use A° to mean the partition
A with n — j zeros adjoined, so that A° = (A, A2, ..., A}, 0j41,...,0,) is a partition of
length n. Then the monomial symmetric polynomial m; (x1, X2, ..., X,) in n indeterminates
corresponding to the partition X is the sum over all the distinct monomials in n indeterminates
{x1, x2, ..., x,} with the parts of A0 as exponents. The idea is that whenever j < n, in each
monomial j — n of the indeterminates have the form xio ', and vanish, with j indeterminates

surviving (with a nonzero exponent). That is, m; (x1, x2, ..., X,) = Zx;\?x;g .. .x,’,\("] where
the sum is over all distinct permutations of A°, treating all the 0; parts equally as 0, and putting
any x? ‘=1

If X - k, thenm; (xy, X2, ..., Xx,) ishomogeneous of degree k and the monomial symmetric
function m; (x) is the unique symmetric function from the group A® of homogeneous
symmetric functions which satisfies the projection to n indeterminates ,0,’1c (m(x)) =
m; (xy, ..., x,) forevery n > k. The space spanned by all monomial symmetric functions of
degree k is A® (9], proposition 4.3.3), whence A = Z[m,].

There are several other bases for AX). We are specifically interested in two of them:
the power-sum symmetric functions and the Schur S-functions. For any r € N, the rth
power-sum symmetric function is p,(x) = Zi>1 x;. The power-sum symmetric functions
are multiplicative, so for any partition A = (A, ..., Ax) we write py = py,...ps. The
power-sum symmetric functions p; are well known as a Q-basis for the ring of symmetric
functions (see [5], page 16, for example).

A characteristic mapping is an isomorphism from the ring generated by the characters of
the symmetric group onto the ring of symmetric functions. Frobenius’ theorem says that there
is a characteristic mapping which maps the group characters x* of the symmetric group to the
symmetric function sy (x).

Explicitly we have

50 =D 2, xhpr),
PHEIA]
where x 3 is the character on the class p, which has centralizer of size z,; and p,(x) is the
power-sum symmetric function. The power-sum symmetric function occurs here definitively.
Indeed, the right-hand side of this expression is just the characteristic mapping of x*, the left-
hand side being its image in the ring of symmetric functions. The symmetric functions s; (x)
are called Schur S-functions. The Schur S-functions form a Z-basis for the ring of symmetric
functions ([5], 1.3.3) and they establish a strong connection between the theory of symmetric
functions and the combinatorial theory of Young diagrams. Indeed, Schur S-functions may be
defined purely combinatorially, as in [9].
The transition matrix from the power-sum symmetric functions to the Schur S-functions
is just the character table of the symmetric group S,. This is because of the orthogonality of
the characters. This means that

ppX) =) xpsi(x), )

Aol

where ) is the character x* on the class p.
The transition matrix K from the Schur S-functions s, (x) to the monomial symmetric
functions m, (x) has coefficients K, in the equation

s(x) = Z K)»}Lm/l, (x).
MR
The numbers K, are called Kostka numbers and the matrix K is called the Kostka matrix.
Actually it turns out that there is a broader definition of Kostka numbers and the Kostka matrix,
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which we meet in section 6. When we do meet the Kostka numbers and Kostka matrix again,
we see that there is a  dependence that has not come into play yet. It turns out that the case
described here is for when t = 1.

4. Projective representations

A projective representation of the symmetric group S, is a mapping M from S, into the general
linear group GL(k) so thatforx,y € S,

MxX)M(y) =t (x, y)M(xy),

for some 7(x,y) € C* = C/{0}. Because the linear transformations are invertible, the
mapping t is a 2-cocycle. The set of cohomology classes of 2-cocyles forms an Abelian
group called the Schur multiplier. We refer to section 1 of [12] for further details or to [1] for
the comprehensive account. In this case, since we are mapping from the symmetric group,
the nature of the equivalence classes of these 2-cocycles is available. Indeed, they have a
2-element classification for n > 4 as Z, ([1], theorem 2.7). This equivalency is determined
by the Schur multiplier. Representations M of S, for which t(x, y) = 1 correspond with the
ordinary linear representations; otherwise there exist group elements such that 7 (x, y) = —1
and these correspond to a double cover S, of S,. It is the characters of this double cover that
we mean when we talk about the irreducible characters of the projective representation. This
double cover is sometimes called the spin representation and its characters are called spin
characters. We use this terminology, and in section 6 we write the spin characters in terms
of the ordinary ones. We use this relationship to describe a new combinatorial algorithm to
determine spin character values.

Some specifics on spin characters, in the context of Q-functions, are noted here. Denote
by g“l’} the spin character £* on the class u of the symmetric group S,. Use OP to mean the
class of partitions with all parts odd integers, and call the members of OP odd part partitions.
Use DP to mean the class of partitions with all parts distinct integers (so that the parts are
written in strict descending order) and call the members of DP distinct part partitions. Only
spin characters ¢ * with A € DP on the class p € OP are relevant here, consistent with the
same restrictions in [10] and [1].

Just as Frobenius had shown that the ordinary group characters of the symmetric
group mapped to S-functions, Schur called the characteristic mapping of the spin characters
O-functions.

For any A € DP, the Schur Q-function Q) is determined by the characteristic mapping
of spin characters ¢* so that

0u(x) = Y 23 0WHERO Ik, (1), 3)

PEIA
peOP

where /(1) means the length of the partition X; ¢ :} are the spin characters on the class p € OP;
Do (x) are the power-sum symmetric functions; and, z,, is the size of the centralizer, determined
by Frobenius’ formula (see lemma 2.1).

5. Hall-Littlewood functions

The Hall-Littlewood functions are defined in the ring A[z] of symmetric functions with
coefficients in Z[t]. The Hall-Littlewood P-polynomials are given by
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) s n Xi —1X;
Po(xp---x,5t) = E o|x"xy Hx— ,

N i~ Xj
w€eS, /S} Ai>Aj

where S,f is the subgroup of permutations w € S, such that A,,;y = A;. We pass to the inverse
limit requiring that, for every XA - k, the image of the Hall-Littlewood functions P, (x; t) from
the subgroup A®[¢] be the Hall-Littlewood polynomials Py (x1, ..., x,; ) in A®[¢] for each
n > k. The Hall-Littlewood (HL) P-functions are algebraically independent over Z[¢] and
form a Z[¢]-basis for the ring A[¢] ([5], proposition 3.2.7). When ¢ = 1 the HL P-functions
are just the monomial symmetric functions: P, (x; 1) = m; (x).

The Hall-Littlewood Q-functions are scalar multiples of HL. P-functions given by

05(x51) = b (1) Pr(x; 1), “)
where b; (t) = [ ;> ¢m, (t) and
o)== =) (1=1"), )
with m;, being the multiplicity of the part A; in A.
When ¢ = —1, equation (5) vanishes for any r > 2. This means that the multiplicity m;,

of any part A; must equal 1. In other words, the HL Q-function Q; (x; —1) is nonzero only
for distinct part partitions. Indeed, the HL Q-functions Q; (x; —1) are exactly the Q-functions
introduced by Schur and the subject of section 4. This provides an important link to the
spin characters because the Q-functions are given definitively by a characteristic mapping
(equation (3)). Note also that when r = —1

bi(=1) =[] om, D =[]0 +1)=2'", 6)

i>1 i>1
since necessarily A € DP, and equation (4) becomes
Or(x: =1) =2V P (s —1).

The transition matrix X (#) between the power-sum symmetric functions and the HL
P-functions has coefficients X 2 (t) determined by

Po(x¥) =) XH(t)Py(x: 1), (7)
A

When ¢ = 0 the HL P-functions are the Schur S-functions: P (x; 0) = s, (x), and so the
entries in the transition matrix X (0) are the ordinary group characters of the symmetric group
(see equation (2))

A A
X5(0) = 1.

Lemma 5.1. When t = —1 and p is an odd part partition, the entries in the transition matrix
X (t) between the power-sum symmetric functions and the HL P-functions are scalar multiples
of the spin characters of the symmetric group. Specifically, for p € OP

Xﬁ(—l) — 2%[1(?~)*1(ﬂ)+€]§-/); (8)

;;» — 2%[1(;0)*1()»)*6])(2(_1). 9)

Proof. The orthogonality relations developed in section 3.7 of MacDonald’s book [5] yield
0,(x; 1) =Y 2,() ' X5 (1) p,(x), (10)
)



J. Phys. A: Math. Theor. 41 (2008) 315210 A Plant

where z,(¢) is a generalized form of Frobenius’ formula for the size of the centralizer, given
by
20 =z, [Ja—7". (1
i1
When p is an odd part partition and t = —1, equation (11) yields
2p(—1) = 2,271,

Using this, we evaluate equation (10) at t = —1 to obtain

0i(x; =1) =Y 2,"2PX (=) p,(x). (12)
o

Since Q;(x; —1) is Schur’s Q-function, we can compare this equation to Schur’s original
equation introducing the Q-functions (equation (3)):

1 _
0i(x) = Y 220OHEO Tk (x).
peOP
Comparing coefficients gives equation (8). Re-arranging to make the spin character the object
gives equation (9). ]

6. A new recipe for the spin characters of the symmetric group

A rich and well-established connection between the theory of symmetric functions and
the combinatorial properties of Young diagrams and tableaux enables us to write a new
combinatorial algorithm for calculating the spin characters. The algorithm we describe is
just an amalgamation of two existing theorems/algorithms: the first is due to Lascoux and
Schiitzenberger and appears shortly (theorem 6.1); the second is Schensted’s build up staircase
algorithm for the ordinary characters of the symmetric group. Appendix A gives the details
of Schensted’s algorithm.

The Kostka matrix K (t) is the transition matrix between the Schur S-functions and the
HL P-functions and has coefficients K, (¢), called Kostka numbers, in the equation

53(6) = ) K (0) Pu(x; 1),
7

When ¢ = 1, recall that the HL. P-functions are just the monomial symmetric functions. In
this case, the Kostka numbers and Kostka matrix just described are the same as those given
in section 3. We are interested in the case t = —1. Lascoux and Schiitzenberger found a
combinatorial formula for the Kostka numbers for any value of #.

Theorem 6.1 (Theorem of Lascoux and Schiitzenberger, [5], theorem 3.6.5). The elements of
the Kostka Matrix are given by

K)Lp (t) — Z tc(l’)’
T

where the sum is over all possible unitary tableaux t formed by injecting p into the Young
diagram Y*, and c(t) is the charge of the word associated with the tableau t.

The Kostka matrix K () can be used to connect the transition matrix X (¢) and the ordinary
characters. Specifically ([5], equation 3.7.6")

X5 =) xlKu o), (13)
[7>28
where the sum is over all partitions © > X in the reverse lexicographical ordering.
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Theorem 6.2. Suppose . € DP is a distinct part partition of weight n with length (), and
p € OP is an odd part partition of weight n and length [(p). The spin character {* on the
class p is

1 —l(A)—€
C;‘ — 2:ll(P=1()—€] 2 X;)LK/M(—I)7 (14)
w=A

where the sum is over all partitions w greater than or equal to ) in the reverse lexicographical
ordering; x" is the ordinary character of the symmetric group S, on the class p; K ;(—1)
are the Kostka numbers witht = —1 and € is appropriately 0 or 1.

Proof. Using equation (9) from lemma 5.1 with equation (13) is all that is required. ]

Remark 6.3. Theorem 6.2 allows us to determine the spin characters using known
combinatorial methods for calculating the ordinary characters. We give a ‘build-up’ method
here because it fits well with Lascoux and Schiitzenberger’s algorithm for the Kostka numbers.
This means that for larger order characters we do not rely on needing to know the spin characters
of lower orders.

Algorithm 6.4. Suppose ). € DP is a distinct part partition of weight n and p € OP is an
odd part partition of weight n. To calculate the spin character ¢ [)} of the symmetric group S,,
we must consider partitions (1 = |A| where > A in the reverse lexicographic ordering. For
each of these |,

(i) calculate the charge c(t) of each of the unitary tableaux t formed by injecting X into Y.
Compute the sum Y (—1)° ;

(ii) calculate the number of negative applications of each of the regular tableaux o formed by
injecting p into Y*. Denote by n.(0,,) the number of tableaux o which involves an even
number of negative applications and by n,(c,) the number of tableaux o which involves
an odd number of negative applications. Find the difference n.(0,) — n,(0,), and call
this difference An(o,,).

Then

g} = 2iw-Im-a 3~ [An (o) - (Z(—l)“”ﬂ , (15)

nZA

where T has shape i, [(p) and [()\) denote the lengths of the partitions p and A respectively;
and € is 1 ifl(p) — [()) is odd, and 0 otherwise.

Proof. Part (i) of our algorithm is exactly Lascoux and Schiitzenberger’s algorithm for the
Kostka numbers K ,; (—1). Part (ii) of our algorithm is exactly Schensted’s build-up staircase
recipe for the ordinary characters which is detailed in appendix A. Lascoux and Schiitzenberger
theorem (theorem 6.1) requires tableaux of shape p. Since Schensted’s build-up staircase
recipe also requires tableaux of shape p, we naturally merge the two algorithms. Indeed,
equation (15) is just equation (14) with K, (—1) replaced by ZT(—I)C(’) using Lascoux and
Schiitzenberger’s theorem (theorem 6.1) and with x ' replaced by An(o,,) using Schensted’s
recipe (algorithm A.1). |

Example 6.5. Suppose we want to calculate the spin character ¢ “» on the class p = (31%).
Then we must consider all partitions p of weight 6 such that © > A = (42). So we put

8
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Unitary Tableaux Regular Tableaux
Inject A = (42) Inject p = (313)
)= (6) [LT1[1]1]2]2] [1[1]1]2[3]4]
w = {221111} # neg =0
w = {2110; 21105 10; 1o}
c(lw) =2 ne(o,) =1 ne(o,) =0
(-1)2=1 An(o,)=1-0=1 I1x1=1
1]1]1]2]3 1]1]1]2]4
p=(51)
w = {211112} # neg =0 # neg =0
w = {1020; 2110; 10; 1o}
1[1]1]3]4 1[1]2]3[4
clw) =1 # neg =0 #neg =1
(-1 =-1
—1x2==2
n=(42)
w = {111122}
w = {1020; 19205 10; 1o}
# neg =0
c(w)=0 # neg =0
(-1)°=1 ne(o,) =3 no(oy,) =3
An(o,)=3-3=0 1x0=0
1+-2+40
Also I(p) = 4 and I(\) = 2. Hence =-1

4 4-2
Gy =27 x —1=-2.

Figure 1. Diagrams and calculations for example 6.5.

w1 = (6); ur = (51); w3 = (42) and sum over these u;. Figure 1 contains a table in which
each row is indexed by each one of the p; just listed. The left-hand column in the table shows
the sum ) _(— D@ from part (i) of algorithm 6.4. The middle column shows the calculation
of the differences A(o,) described in part (ii) of algorithm 6.4. In the right-most column

multiples of the two are summed, producing a total of —1 to be multiplied by 22 () =/(G)=€),
In this case we calculate ;glzf) = -2
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Spin character tables are provided in appendix B. Referring to the table for characters of
degree 6, we look for the row indexed by (42) and the column headed (31%). The entry there
is the value of the spin character 4((34123)) and this value is —2.

7. Special cases

7.1. Length one partitions

Theorem 7.1. Suppose A = (n) is a length one partition of weight n. The spin character
;=" on the class p is

§2=(n) — 23l (16)

where

1 whenever n is odd

2 whenever n is even.

Proof. Consider the special case that A = (n) is a length one partition of weight n. Using our
recipe (algorithm 6.4) we need to consider only i > A. Since A = (n), the only u satisfying
this requirement is 4 = (n). This means that the sum over pu in equation (15) reduces to the
product of Y (—1)“™ determined in step (i) and An(o,,) in step (ii) of algorithm 6.4, both
evaluated at u = (n).

Whenever 4 = (n) and A = (n), the one and only unitary tableau formed by the
injection of A into Y* is the trivial one row tableau with 1s everywhere. So the extracted
word w = (111...1) of length n is a standard word with charge 0. Hence we always have
ZT(—I)C(” = (—=1)® = 1. This reduces the spin character calculation to the product of
An(o,) and a power of 2.

Next, An(o,) in step (ii) of algorithm 6.4 depends on the number of negative applications
involved in injecting the class p into Y*. This is a trivial calculation in this case since the
number of rows in Y* is 1, meaning the number of negative applications must always be 0,
since we will never have an even number of rows. There is always one and only one way to
inject any partition o into a one-row diagram to give a regular tableau. Indeed, we always
have only one trivial even negative application in this case. And so we always obtain 1 even
and 0 odd negative applications for any p, whence An(o,) = n.(o,) —n,(o,) = 1.

Hence, in the special case that A = (n), equation (15) always gives An(o,) -
(>, (=D“™) = 1 summed only once in the case u = (n), and so the spin character is
just 220)~1®=9) Since /(1) = 1, this expression reduces further to

o = 2 -1-9
; .

Next, combine the constants 1 and € (where € = 0 or 1 appropriately) by putting —1 —€ = —4§
where the value of § is

1 whenever 1(p) is odd
"~ |2 whenever 1(p) is even.

Finally, note that since p F n is an odd part partition, if » is even, then p must have an
odd number of parts. Likewise, when n is odd, p must have an even number of parts. This
means that we can describe § in terms of n and remove the dependence on /(p). O

Example 7.2. The first row of the spin character tables (see appendix B) correspond to the
irreducible character £*=(. Using corollary 7.1, we can easily give the first row of any spin

10
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character table for different n. Consider the case when, say, n = 10. Since n is even, the value
of § hereis § = 2.

10 — 220(0)-2)

P
class: | 91 (73) (71%) (5% (531> (51°) (31 @317) 19
I(p) 2 2 4 2 4 6 4 8 10
{1 1 1 2 1 2 4 2 8 16

Looking at the spin character tables given in appendix B, we see that all the characters just
calculated are indeed true and correct.

Remark 7.3. A similar form of equation (16) from theorem 7.1 is mentioned by Morris [6] as
having appeared in Schur’s original paper [10]. We have, of course, obtained this result in a
completely different way to that of Schur.

7.2. When the class is the identity element

Distinct part partitions A = (A, ..., Ax) of length k can be represented by another type of
diagram )* with a main diagonal of k boxes marked with a » say. Put A; boxes in the ith row
to the right of the marked box for each 1 < i < k. Then put A; — 1 dashed boxes in the ith
column below the marked box for each 1 < i < k. The diagram Y* constructed in this way is
called the shifted symmetric diagram. The boxes to the right of the marked diagonal make up
the standard shifted diagram, denoted here by Y*.

Graphically, the hook length of a partition A at coordinate x in the Young diagram Y* is
the number of boxes along the row to the right of x, plus the number of boxes down the column
below x, plus 1 (for the box x itself). For A € DP with shifted diagram V*, the hook length
h(x) at x € Y* is defined to be the hook length at x in the shifted symmetric diagram J*. We
write i1(x) as h(x) to clarify this point.

Proposition 7.4 ([5], p 134). When the class p is restricted to the identity element (1*) of
the symmetric group S,, the coefficients in the transition matrix X ?1”) from the power-sum
symmetric functions p,=») to the HL P-functions Py, (x;t = —1) can be calculated using
the hook lengths of the shifted diagram Y*. Explicitly

n!
]—Ixey" fl(x) ’

where h(x) is the hook length in Y* at x for all x in Y*.

X (=1) =

Using this hook-length formula and making use of equation (9) yields the following
corollary.

Corollary 7.5. Let p & n and A - n be partitions of weight n with p = (1"). Then the spin
character ;“l’\n on the class p = (1") is determined by

n!
ery* ;Z(X) ’

where Y* is the shifted diagram of A; h(x) is the hook length in Y* at x for all x in Y*; and €
is 0 or 1 accordingly.

X Tn—100)—
Lhay = 230100l
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Proof. Combining equation (9) from lemma 5.1 with the hook-length formula given in
proposition 7.4 completes the proof. ]

Example 7.6. Consider the class (1%) of Sg. For A = (42) we have [(1) = 2. The diagram
Y* of A with the hook lengths for each coordinate x € J* injected at each x € Y* is

| x|6[4]3]1]
Cox]2]1
and so
=@ — pi(—l—e) ”!N — 93(6-2-0) 6! _21®5 _ 9
o Mooy ) oxal :

where the appropriate value for € is € = 0.
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Appendix A. Ordinary characters of the symmetric group

Schenstead [11] gives an excellent description of a recursive staircase algorithm for calculating
the ordinary characters of the symmetric group ‘based upon a famous formula due to Frobenius’
([11], p 142). From this Schenstead goes on to give a build-up form of this algorithm. We
employ Schensted’s build-up algorithm in part (ii) of our algorithm 6.4.

Algorithm Appendix A.1 (Schensted’s build-up staircase algorithm, [11], 3.5.3). To
calculate the character X,); on the class p = (p1, p2, - . ., pr) in the irreducible representation
(A) = (A1, A, ..., Ag), first draw the Young diagram Y*; then inject p in a regular manner,
in which like digits must form a continuous staircase of some subdiagram. The character x ,ﬁ
is equal to the number of ways of doing the above that involve an even number of negative
applications minus the number of ways of doing the above that involve an odd number of
negative applications.

Appendix B. Spin character tables

Spin character tables from [1] and [6] up to degree 10. The rows are indexed by the characters
of the irreducible representations ¢* in distinct part partitions; the columns are headed above
by the class p, an odd part partition. For example, to look up the character ¢ “" on the class
(312), we go to the table ‘degree 5°, read down the left hand side to the character y *!, written
as (41), and then across to the column headed by (31%). The entry 0 found there is the value
of the spin character 4“3(‘1‘21 ),

12
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Degree 4 Degree 5
‘ 5 2
class — || (1%) | (31) class — | (1°) | (31%) | (5)
5) | 4 2 1
(4) 2 1
B[ 4 7 (41) 6 0 -1
(32) | 4 -1 1
Degree 6 Degree 7
1q — 7 4 2 2
©) [ 4] 2 1|1 i
61) || 20 [ 4 0 11
(1) | 6 2 [ 1] -2
42) | 20 2 0 2 (52) | 36 | 0 = 0 !
. 43) || 20 | -2 0 2 | -1
@) 4 | -1 L] -2 (421) | 28 | -4 2 2 10
Degree 8
class — || (18) | (31%) | (513) | (3%1%) | (71) | (53)
(8) 8 4 2 2 1 1
(71) 48 12 2 0 -1 -2
(62) || 112 8 -2 -2 0 2
(53) || 112 -4 -2 4 0 1
(521) || 64 -4 1 -2 1 -1
(431) || 48 -6 2 0 -1 1
Degree 9
class — || (19) | (318) | (511) | (3%1%) | (712) | (531) | (3%) | (9)
(9) 16 8 4 4 2 2 2 1
(81) | 56 16 4 2 0 -1 -2 | -1
(72) | 160 | 20 0 -2 -1 2 1
(63) || 224 4 -4 2 0 1 1 -1
(54) || 112 | -4 -2 4 0 -1 4 11
(621) || 240 0 0 -6 2 0 6 |0
(531) || 336 | -24 4 0 0 -1 6 0
(432) | 96 | -12 4 0 -2 2 6 |0
Degree 10
class — || (119) | (317) | (51%) | (321%) | (71) | (531%) | (3%1) | (91) | (73) | (5%)
1oy [ 16 | 8 4 4 2 2 2 1|1 |1
(91) 128 40 12 8 2 0 -2 -1 -2 -2
(82) | 432 | 72 8 0 2 2 0 0| 2 | 2
(73) 768 | 48 -8 0 -2 2 6 0 -1 -2
(64) 672 0 -12 12 0 0 -6 0 0 2
(721) | 400 | 20 0 -8 1 0 4 11 afo
(631) | 800 | -20 0 -4 2 0 1 -1 1 0
(541) 448 | -28 2 4 0 -2 2 1 0 -2
(532) || 432 | -36 8 0 -2 1 0 0 -1 2
(4321) || 96 | -12 4 0 -2 2 -6 0 2 -4
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